Contents
- define constants
- Loop through wire gauges
- define paramters (all lengths, widths, etc. in centimeters)
- define inductance of multi-layered coil
- Effective Series Resistance
- Quality factor
- Coupling coefficient of pair of coils
- Power Transfer Efficiency
- Loop through coil turns
- define paramters (all lengths, widths, etc. in centimeters)
- define inductance of multi-layered coil
- Effective Series Resistance
- Quality factor
- Coupling coefficient of pair of coils
- Power Transfer Efficiency
- Loop through inner diameter
- define paramters (all lengths, widths, etc. in centimeters)
- define inductance of multi-layered coil
- Effective Series Resistance
- Quality factor
- Coupling coefficient of pair of coils
- Power Transfer Efficiency
- Loop through wire gauges
- define paramters (all lengths, widths, etc. in centimeters)
- define inductance of multi-layered coil
- Effective Series Resistance
- Quality factor
- Coupling coefficient of pair of coils
- Power Transfer Efficiency
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Power Transfer Efficiency Model % 1/31/16 % Model references at bottom %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all load('NTable.mat', 'N');
define constants
Uo = 4*pi*10^-7; % Uo = magnetic permeability of free space Eo = 8.85*10^-12; % permittivity of free space rho = 1.68 * 10^-8; % rho = resistivity of copper sigma = 58.5 * 10^6; % conductivity of copper
Loop through wire gauges
i = 0; for w1 = [.0255 .0286 .0321 .0361 .0405 .0455 .0511 .0573 .0644 .0723 .0644 .0723 .0812 .0912 .1024]; i = i + 1; j = 0; for w2 = [.0255 .0286 .0321 .0361 .0405 .0455 .0511 .0573 .0644 .0723 .0644 .0723 .0812 .0912 .1024];
j = j + 1;
define paramters (all lengths, widths, etc. in centimeters)
D = 0.5; % distance between coils --> 0.5 - 1 cm n = [15 6]; % number of turns s = [0 0]; % wire spacing w = [w1 w2]; % wire thickness DIn = [0.7 2.2]; % inner diameter DOut = DIn + 2.*((n).*w + n.*s); % outer diameter t = w+s; % layer thickness in cm wire + spacing f = 3*10^6; omega = 2*pi*f; a = (DOut+DIn)/4; % Average radius in cm b = n.*t - s; % thickness of total turns in cm c = w; % thickness of total layers in cm l = 2*pi*a.*n; % length of conductor in cm skindepth = 100/sqrt(pi*f*sigma*Uo); %skin depth in cm Ac = pi*(w/2).^2; % cross sectional area of conductor in coil DAvg = (DOut + DIn)./2; % Davg = mean diameter Area_eff = w*skindepth*pi; % effective area of conductor RLoadAC = 1000; % hypothetical load on receiver
define inductance of multi-layered coil
Kim, J., Basham, E., Pedrotti, K. Geometry-based optimization of radio-frequency coils for powering neuroprosthetic implants International Federation for Medical and Biological Engineering October 21, 2012
Lself = 10^-6*(a.^2.*n.^2)./(2.54*(9*a+10*b)); % Inductance in henries
Effective Series Resistance
R_DC = rho*l/Ac;
R_Skin = w*(20.8*pi/rho)*sqrt(f)*10^-9;
zeta = sqrt(pi)*w/(2*skindepth);
R_Proximity = zeta .* ((sinh(2*zeta) + sin(2*zeta)) ./(cosh(2*zeta) - cos(2*zeta)) + ...
(2/3)*(n.^2-1).*((sinh(2*zeta) - sin(2*zeta)) ./(cosh(2*zeta) + cos(2*zeta))));
R_ESR = R_DC * (1 + R_Skin + R_Proximity);
Quality factor
Q = omega * Lself./R_ESR;
Coupling coefficient of pair of coils
r2r1_ratio = sqrt((a(1)-a(2))^2 + D^2)/sqrt((a(1)+a(2))^2 + D^2); % radius and distance ratio
Nval = NLookup(r2r1_ratio, N);
k = 2.54*Nval*sqrt(((6*a(1)+9*b(1)+10*c(1))*(6*a(2)+9*b(2)+10*c(2)))/(0.64*a(1)*a(2)));
M = k * sqrt(Lself(1) * Lself(2));
Power Transfer Efficiency
PTE(i,j) = 100 *(k^2 * Q(1)*Q(2)^3*RLoadAC*R_ESR(2))/((k^2*Q(1)*Q(2)*RLoadAC + (1+100/R_ESR(1)) * ...
(RLoadAC+Q(2)^2*R_ESR(2)))*(RLoadAC+Q(2)^2*R_ESR(2)));
wire(j,1) = w2;
wire(j,2) = w2;
end end subplot(2,2,1) surf(wire(:,1),wire(:,2),PTE); xlabel('Secondary wire thickness') ylabel('Primary wire thickness') zlabel('Power Transfer Efficiency %') zlim([0 100]) title('PTE vs W')
Loop through coil turns
i = 0; for n1 = [1:16]; i = i + 1; j = 0; for n2 = [1:.5:8.5];
j = j + 1; s1 = (3.911 - n1*2*.0255 - 0.8) / n1; s2 = (3.034 - n2*2*.1024 - 1.6) / n2;
define paramters (all lengths, widths, etc. in centimeters)
D = .5; % distance between coils --> 0.5 - 1 cm n = [n1 n2]; % number of turns s = [s1 s2]; % wire spacing w = [.0255 .1024]; % wire thickness DIn = [0.7 2.2]; % inner diameter DOut = DIn + 2.*((n).*w + n.*s); % outer diameter t = w+s; % layer thickness in cm wire + spacing f = 3*10^6; omega = 2*pi*f; a = (DOut+DIn)/4; % Average radius in cm b = n.*t - s; % thickness of total turns in cm c = w; % thickness of total layers in cm l = 2*pi*a.*n; % length of conductor in cm skindepth = 100/sqrt(pi*f*sigma*Uo); %skin depth in cm Ac = pi*(w/2).^2; % cross sectional area of conductor in coil DAvg = (DOut + DIn)./2; % Davg = mean diameter Area_eff = w*skindepth*pi; % effective area of conductor RLoadAC = 1000; % hypothetical load on receiver
define inductance of multi-layered coil
Kim, J., Basham, E., Pedrotti, K. Geometry-based optimization of radio-frequency coils for powering neuroprosthetic implants International Federation for Medical and Biological Engineering October 21, 2012
Lself = 10^-6*(a.^2.*n.^2)./(2.54*(9*a+10*b)); % Inductance in henries
Effective Series Resistance
R_DC = rho*l/Ac;
R_Skin = w*(20.8*pi/rho)*sqrt(f)*10^-9;
zeta = sqrt(pi)*w/(2*skindepth);
R_Proximity = zeta .* ((sinh(2*zeta) + sin(2*zeta)) ./(cosh(2*zeta) - cos(2*zeta)) + ...
(2/3)*(n.^2-1).*((sinh(2*zeta) - sin(2*zeta)) ./(cosh(2*zeta) + cos(2*zeta))));
R_ESR = R_DC * (1 + R_Skin + R_Proximity);
Quality factor
Q = omega * Lself./R_ESR;
Coupling coefficient of pair of coils
r2r1_ratio = sqrt((a(1)-a(2))^2 + D^2)/sqrt((a(1)+a(2))^2 + D^2); % radius and distance ratio
Nval = NLookup(r2r1_ratio, N);
k = 2.54*Nval*sqrt(((6*a(1)+9*b(1)+10*c(1))*(6*a(2)+9*b(2)+10*c(2)))/(0.64*a(1)*a(2)));
M = k * sqrt(Lself(1) * Lself(2));
Power Transfer Efficiency
PTE(i,j) = 100 *(k^2 * Q(1)*Q(2)^3*RLoadAC*R_ESR(2))/((k^2*Q(1)*Q(2)*RLoadAC + (1+100/R_ESR(1)) * ...
(RLoadAC+Q(2)^2*R_ESR(2)))*(RLoadAC+Q(2)^2*R_ESR(2)));
turns(j,2) = n2;
end turns(i,1) = n1; end subplot(2,2,2) surf(turns(:,1),turns(:,2),PTE); xlabel('Secondary # of turns') ylabel('Primary # of turns') zlabel('Power Transfer Efficiency %') ylim([0,10]) xlim([0,20]) zlim([0,100]) title('PTE vs N')
Loop through inner diameter
i = 0; for d1 = [.1:.1:1.2]; i = i + 1; j = 0; for d2 = [.2:.2:2.4];
j = j + 1; s1 = (4 - 59*2*.0255 - d1) / 59; s2 = (3 - 5*2*.1024 - d2) / 5;
define paramters (all lengths, widths, etc. in centimeters)
D = .5; % distance between coils --> 0.5 - 1 cm n = [15 6]; % number of turns s = [s1 s2]; % wire spacing w = [.1024 .255]; % wire thickness DIn = [d1 d2]; % inner diameter DOut = DIn + 2.*((n).*w + n.*s); % outer diameter t = w+s; % layer thickness in cm wire + spacing f = 3*10^6; omega = 2*pi*f; a = (DOut+DIn)/4; % Average radius in cm b = n.*t - s; % thickness of total turns in cm c = w; % thickness of total layers in cm l = 2*pi*a.*n; % length of conductor in cm skindepth = 100/sqrt(pi*f*sigma*Uo); %skin depth in cm Ac = pi*(w/2).^2; % cross sectional area of conductor in coil DAvg = (DOut + DIn)./2; % Davg = mean diameter Area_eff = w*skindepth*pi; % effective area of conductor RLoadAC = 1000; % hypothetical load on receiver
define inductance of multi-layered coil
Kim, J., Basham, E., Pedrotti, K. Geometry-based optimization of radio-frequency coils for powering neuroprosthetic implants International Federation for Medical and Biological Engineering October 21, 2012
Lself = 10^-6*(a.^2.*n.^2)./(2.54*(9*a+10*b)); % Inductance in henries
Effective Series Resistance
R_DC = rho*l/Ac;
R_Skin = w*(20.8*pi/rho)*sqrt(f)*10^-9;
zeta = sqrt(pi)*w/(2*skindepth);
R_Proximity = zeta .* ((sinh(2*zeta) + sin(2*zeta)) ./(cosh(2*zeta) - cos(2*zeta)) + ...
(2/3)*(n.^2-1).*((sinh(2*zeta) - sin(2*zeta)) ./(cosh(2*zeta) + cos(2*zeta))));
R_ESR = R_DC * (1 + R_Skin + R_Proximity);
Quality factor
Q = omega * Lself./R_ESR;
Coupling coefficient of pair of coils
r2r1_ratio = sqrt((a(1)-a(2))^2 + D^2)/sqrt((a(1)+a(2))^2 + D^2); % radius and distance ratio
Nval = NLookup(r2r1_ratio, N);
k = 2.54*Nval*sqrt(((6*a(1)+9*b(1)+10*c(1))*(6*a(2)+9*b(2)+10*c(2)))/(0.64*a(1)*a(2)));
M = k * sqrt(Lself(1) * Lself(2));
Power Transfer Efficiency
PTE(i,j) = 100 *(k^2 * Q(1)*Q(2)^3*RLoadAC*R_ESR(2))/((k^2*Q(1)*Q(2)*RLoadAC + (1+100/R_ESR(1)) * ...
(RLoadAC+Q(2)^2*R_ESR(2)))*(RLoadAC+Q(2)^2*R_ESR(2)));
inner(j,2) = d2;
end inner(i,1) = d1; end subplot(2,2,3) surf(inner(:,1),inner(:,2),PTE); xlabel('Primary Inner Diameter, centimeters') ylabel('Secondary Inner Diameter, centimeters') zlabel('Power Transfer Efficiency %') ylim([0,2.5]) xlim([0,1.3]) zlim([50 100]) title('PTE vs DIn')
Loop through distances
for D = [0:.25:5];
i = i + 1; w = [0.1024 0.0255]; n = [15 6]; DIn = [0.7 2.2]; s = [0 0];
define paramters (all lengths, widths, etc. in centimeters)
DOut = DIn + 2.*((n).*w + n.*s); % outer diameter t = w+s; % layer thickness in cm wire + spacing f = 3*10^6; omega = 2*pi*f; a = (DOut+DIn)/4; % Average radius in cm b = n.*t - s; % thickness of total turns in cm c = w; % thickness of total layers in cm l = 2*pi*a.*n; % length of conductor in cm skindepth = 100/sqrt(pi*f*sigma*Uo); %skin depth in cm Ac = pi*(w/2).^2; % cross sectional area of conductor in coil DAvg = (DOut + DIn)./2; % Davg = mean diameter Area_eff = w*skindepth*pi; % effective area of conductor RLoadAC = 1000; % hypothetical load on receiver
define inductance of multi-layered coil
Kim, J., Basham, E., Pedrotti, K. Geometry-based optimization of radio-frequency coils for powering neuroprosthetic implants International Federation for Medical and Biological Engineering October 21, 2012
Lself = 10^-6*(a.^2.*n.^2)./(2.54*(9*a+10*b)); % Inductance in henries
Effective Series Resistance
R_DC = rho*l/Ac;
R_Skin = w*(20.8*pi/rho)*sqrt(f)*10^-9;
zeta = sqrt(pi)*w/(2*skindepth);
R_Proximity = zeta .* ((sinh(2*zeta) + sin(2*zeta)) ./(cosh(2*zeta) - cos(2*zeta)) + ...
(2/3)*(n.^2-1).*((sinh(2*zeta) - sin(2*zeta)) ./(cosh(2*zeta) + cos(2*zeta))));
R_ESR = R_DC * (1 + R_Skin + R_Proximity);
Quality factor
Q = omega * Lself./R_ESR;
Coupling coefficient of pair of coils
r2r1_ratio = sqrt((a(1)-a(2))^2 + D.^2)/sqrt((a(1)+a(2))^2 + D.^2); % radius and distance ratio
Nval = NLookup(r2r1_ratio, N);
k = 2.54*Nval*sqrt(((6*a(1)+9*b(1)+10*c(1))*(6*a(2)+9*b(2)+10*c(2)))/(0.64*a(1)*a(2)));
M = k * sqrt(Lself(1) * Lself(2));
Power Transfer Efficiency
PTE(i,:) = 100 *(k^2 * Q(1)*Q(2)^3*RLoadAC*R_ESR(2))/((k^2*Q(1)*Q(2)*RLoadAC + (1+100/R_ESR(1)) * ...
(RLoadAC+Q(2)^2*R_ESR(2)))*(RLoadAC+Q(2)^2*R_ESR(2)));
end D = [0:.25:5]; subplot(2,2,4) plot(D,PTE,'r'); title('PTE vs D') xlabel('Distance, centimeters') ylabel('PTE, percent') grid; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %References % [1] An Improved Calculation of Proximity-Effect Loss in % High-Frequency Windings of Round Conductors (2003) % Xi Nan, Charles R. Sullivan % https://engineering.dartmouth.edu/inductor/papers/newcalc.pdf % [2] Geometry-based optimization of radio-frequency coils for % powering neuroprosthetic implants % Jungsuk Kim, Eric Basham, Kenneth D. Pedrotti % Med. Biol. Engineering and Computing 51(1-2):123-134 (2013) % [3] Radio Engineers' Handbook % Frederick Emmons Terman % McGraw Hill (1947) % [4] P.L. Dowell, “Effects of eddy currents in transformer windings” % Proceedings of the IEEE, vol. 113, no. 8, pp. 1387–1394, Aug. 1966 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%