Contents
- define constants
- define paramters
- define equations
- define resistance of coil
- define inductance of planar spiral coil
- define inductance of planar spiral coil (Wheeler)
- define inductance of multi-layered coil
- define parasitic capacitance of coil
- define resonance frequency
- define quality
- create differential vectors
- plot result
clear all
define constants
f = 10^7; omega = 2*pi*f; Uo = 4*pi*10^-7; % Uo = magnetic permeability of free space Eo = 8.85*10^-12; rho = 1.68 * 10^-8; % rho = resistivity of copper C1 = 1; % coefficient 1 C2 = 2.46; % coefficient 2 C3 = 0; % coefficient 3 C4 = 0.2; % coefficient 4 layers = input('Enter number of layers\n'); % number of layers in coil
define paramters
N = 1:60; s = 0; w = .00032; DIn = .015; t = w+s; DOut = DIn + 2.*((N).*w + N.*s); t = w+s; a = 100*(DOut+DIn)/4; % Average radius in cm b = N.*t*100; % thickness of total turns in cm c = layers*w*100; % thickness of total layers in cm n = N*layers; % total number of turns l = 2*pi*(a/100).*N; skindepth = sqrt((2*rho)/(omega*Uo))*sqrt(sqrt(1+(rho*omega*Eo)^2)+rho*omega*Eo)*10;
define equations
l = l*layers; Ac = pi*(w/2).^2; % cross sectional area of conductor in coil sigma = (DOut - DIn)./(DOut + DIn); % sigma = fill ratio of coil DAvg = (DOut + DIn)./2; % Davg = mean diameter
define resistance of coil
Rdc = rho.*l./Ac; % Rdc = dc resistance of coil
Rskin = (l*rho)/(pi*(w-skindepth)*skindepth);
R = Rdc;
define inductance of planar spiral coil
%Mohan, S., Hershenson, M., Boyd, S., Lee, T., %Simple Accurate Expressions for Planar Spiral Inductances, %In IEEE Journal of solid-state circuits, Vol. 34, No. 10, October 1999 L1 = (Uo.*((layers*N).^2).*DAvg.*C1)./2 .* (log(C2./sigma) + C3.*sigma + C4 .* sigma.^2);
define inductance of planar spiral coil (Wheeler)
DInE = DIn .* 39.3701; % convert to meters to inches
tE = t .* 39.3701;
A = (DInE + (N+1).*tE)/2;
L2 = ((layers*N).^2.*A.^2)./((30.*A-11.*DInE).*10^6);
define inductance of multi-layered coil
Kim, J., Basham, E., Pedrotti, K. Geometry-based optimization of radio-frequency coils for powering neuroprosthetic implants International Federation for Medical and Biological Engineering October 21, 2012
L3 = (a.^2.*n.^2)./(2.53*(9*a+10*b)*10^6);
define parasitic capacitance of coil
C = 50*10^-15;
define resonance frequency
fo = 1./(2*pi*sqrt(L1.*C));
% RES2 = 1./(2*pi*sqrt(L1.*C2));
define quality
Q1 = (L1.*omega)./R; Q2 = (L2.*omega)./R;
create differential vectors
Rm = R.*ones(size(N)); Rdiff = diff(Rm)./ diff(N); Ldiff = diff(L1)./ diff(N); Qdiff = diff(Q1)./ diff(N); Fdiff = diff(fo)./ diff(N);
plot result
clf; subplot(2,4,1) plot(N,L1*10^6,N,L2*10^6,N,L3*10^6,Nm,Lm,'r*') xlabel('# of turns') ylabel('Inductance (uH)') subplot(2,4,5) plot(N,[Ldiff NaN]) xlabel('# of turns') ylabel('delta L') subplot(2,4,2) plot(N,R,Nm,Rmeas,'r*') xlabel('# of turns') ylabel('Resistance') subplot(2,4,6) plot(N,[Rdiff NaN]) xlabel('# of turns') ylabel('delta R') subplot(2,4,3) plot(N,Q1,N,Q2,Nm,omega*(Lm*10^-6./Rmeas),'r*') xlabel('# of turns') ylabel('Quality') subplot(2,4,7) plot(N,[Qdiff NaN]) xlabel('# of turns') ylabel('delta Q') subplot(2,4,4) plot(N,fo) xlabel('# of turns') ylabel('Resonant frequency') subplot(2,4,8) plot(N,[Fdiff NaN]) xlabel('# of turns') ylabel('delta Fo') set(gcf,'Units','normalized','Position',... [0.00 0.0322 0.92 0.92])